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The relation between the waveguide invariant, multipath impulse response, and ray cycles 

Chris Harrison 

Executive Summary: Underwater sound propagation, being a wave phenomenon, 
exhibits interference effects, as is well known. With broad band sonars it is often 
possible to see this interference across a wide band of frequencies as source and 
receiver separate in range. The resulting pattern viewed in frequency-range space 
exhibits interference fringes, often referred to as “striations”, which appear as streaks 
or lines which may converge or diverge in frequency as range increases. This 
phenomenon, though at first sight just a curiosity, depends mainly on the sound 
speed structure and the depths of the source and receiver. For this reason it has been 
of great interest in separating target echoes out from reverberation. The frequency 
spectrum of reverberation as a function of travel time can also be thought of as a plot 
of frequency vs. range, so one would expect it to show striations directly. If so, the 
striations provide the potential to separate targets from reverberation and to estimate 
their depth.  
 
The “waveguide invariant”, , that controls the striations, is usually thought of as a 
modal phenomenon. This report shows that striations can be explained simply 
through the variation of the eigenray arrival times with range, in short, the variation 
of the multipath impulse response. It is possible to calculate  for a number of sound 
speed profiles analytically and to see what  depends on, why it switches from one 
value to another, how it depends on source-receiver depth, and so on. The analytical 
findings are confirmed by calculating striation patterns numerically starting from 
eigenray travel times in various stratified environments. Most importantly the 
approach throws some light on what can be deduced from  alone and the likelihood 
and utility of striations in reverberation. 
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The relation between the waveguide invariant, multipath impulse response, and ray cycles 

Chris Harrison 

Abstract: The waveguide invariant, , that manifests itself as interference fringes or 
“striations” in a plot of frequency vs source-receiver separation, is usually thought of 
as a modal phenomenon. This report shows that striations can be explained simply 
through the variation of the eigenray arrival times with range, in short, the variation 
of the multipath impulse response. It is possible to calculate  for a number of sound 
speed profiles analytically and to see what  depends on, why it switches from one 
value to another, how it depends on source-receiver depth, how it depends on 
variable bathymetry, and how smooth the sound speed profile needs to be for clear 
fringes. The analytical findings are confirmed by calculating striation patterns 
numerically starting from eigenray travel times in various stratified environments. 
Most importantly the approach throws some light on what can be deduced from  
alone and the likelihood and utility of striations in reverberation. 

 

 

Keywords: Waveguide invariant, interference fringe, striation, sound speed profile, closed-
form solution, analytical solution, time domain. 
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1 
Introduction 

The behaviour of propagation interference fringes or “striations” as sound source and 
receiver are separated can be quantified through a “waveguide invariant” called  
(Chuprov, 1982; Brekhovskikh and Lysanov, 1990; D’Spain and Kuperman, 1999; 
Brown, Beron-Vera, Rypina, Udovydchenkov, 2005). A special case of these striations is 
the hyperbolic Lloyd mirror fringes that have been used in passive ranging, allowing 
determination of closest point of approach and ratio of range to source depth (Hudson, 
1983; Turgut, Orr, and Rouseff, 2010). More general range localization is discussed by 
Cockrell and Schmidt (2010) and Søstrand (2005). In recent years  has been considered 
as part of the toolset in geoacoustic inversion (Heaney, 2004) and has been applied to the 
detection of targets and reverberatrion estimation (Goldhahn, Hickman and Krolik, 2008) 
and active sonar (Quijano, Zurk, and Rouseff, 2008). It has also been tied into such topics 
as time reversal focusing (Kim, Kuperman, Hodgkiss, Song, Edelman, and Akal, 2003), 
fluctuation statistics (Rouseff, 2002), and beam processing (Yang, 2003). 

Most attempts at understanding the patterns have been through the normal modes of the 
waveguide. A complementary interpretation is that the behaviour of the fringes is 
determined by the behaviour of the impulse response as the receiver is moved, and this is 
the approach taken in this paper. Since it is possible to calculate the delay times of 
eigenrays numerically and in some cases analytically it is then possible, by writing out 
their Fourier transform, to see how the fringes will behave. Because thinking in terms of 
the impulse response is fairly intuitive this approach adds some insight to the more 
conventional modal method, and in some cases even enables qualitative solution without 
detailed computation. 

In the high frequency limit the multipath impulse response consists of many positive and 
negative impulses that correspond to the many eigenrays. The introduction of boundary 
reflections, caustics, rough surfaces, low frequencies certainly alters the detailed shape of 
these impulses, and refractioon may alter the sequence but nevertheless the fringe pattern 
at a given range is the Fourier transform of this impulse response. As the range between 
source and receiver changes the time ordering of the individual impulses generally does 
not change but their separation does. If the time separations widen then the fringe 
separation in frequency reduces in proportion, and vice versa. 
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2 
Demonstration 

First we give a simple numerical demonstration of this by numerically calculating 
eigenray arrival times and rough amplitudes (including signs) by using a very crude 
representation of reflection loss which automatically makes the sequence of impulses tail 
off, but no allowance for caustics, and so on. However, as we will see later, this envelope 
shape is not important. The fringe pattern is just the modulus-square of the Fourier 
transform of this impulse response. 

2.1 Isovelocity case 

Figure 1 is a plot of frequency vs. source/receiver separation for isovelocity water with 
crudely modelled boundaries and mid-depth source and receiver. In this case the shape of 
the fringes is well known and they radiate from zero range. In fact generally the 
dependence of the interference fringes on range can be quantified as the slope of d(log) 
/ d(log r), i.e. the quantity “” 

r

drd

/

/


   (1) 

The fringes here are demonstrably linear with r, and this results in  =1 . 
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Figure 1:  The spectrum of propagation vs. range derived from isovelocity travel times. 
Striations obeying r  are clear. 

2.2 Uniform sound speed gradient case 

It is straightforward for an arbitrary set of elevation angles and a general sound speed 
profile to calculate full ray cycle distance and cycle time and the partial equivalents for 
the source and receiver depths. Then, by interpolation, given each range, one can 
calculate the travel times of all eigenrays that are able to reach the receiver. The resulting 
frequency-range plot for a uniform sound speed gradient (1500m/s down to 1470m/s at 
the seabed) is shown in Fig. 2. Source and receiver depths (90, 91m) in 100m water depth 
were chosen to ensure a wide range of angles. The behaviour is again well known, but 

now the fringes curve the other way and 3 r  so  = – 3. 
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Figure 2:  The spectrum of propagation vs. range derived from eigenray travel times 

when sound speed has a uniform gradient. Striations obeying 3 r  are clear. 
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3 
Analysis 

The basic behaviour of these fringes and their beta value can be calculated analytically in 
several cases of interest. 

3.1 Isovelocity 

By the method of images it is straightforward to show that the eigenrays arriving at 
horizontal range r occur at angles n given by 

rzznH rsn /)2(tan ,,     (2) 

where n is an integer, H is water depth, zs,r are source and receiver depth, and ,  both 
take values +1 and –1. Travel time is simply 

crt nn /sec ,,,,    (3) 

and the delay after the first return is 

)1(sec ,,,,    nn c

r
 (4) 

In the small angle approximation this combined with Eq. (2) becomes  

)2/()2( 2
,, rczznH rsn     (5) 

In the eigenray approximation the impulse response consists of a weighted sequence of 
delta functions at the delays defined by n,,, and consequently the Fourier transform of 
the impulse response F(, r), whose modulus square is the fringe pattern, is 


















,
,,

,
,,

)exp(

)exp()(),(

n
nn

n
nn

ia

diarF

 (6) 

The summation over , means that for each value of n in Eq. (2) there are four 
combinations of  and  over which we should also sum. These four terms result in two 
positive and two negative signs multiplied by almost identical values of the weighting an. 
Thus we can think of Eq. (6) as four separate summations over n in each of which an is a 
positive slowly varying function of n – in effect an envelope.  
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Substituting Eq. (5) in Eq. (6) for n, and for the moment ignoring the slow variation of an 
we find  
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 (8) 

Thus the complex Fourier transform  F is explicitly a function of /r, so no matter what 
its functional form is it has only one shape as  and r vary. At any given r there will be a 
fringe pattern in , but moving to a different value of r we find the same pattern but 
stretched in  in proportion to the increase in r. This automatically constructs a fringe 
pattern where the modulation takes a constant value along lines where r . In other 
words the condition for a fringe is that 

constant A
r


 (9) 

Taking logs and differentiating, we find this obeys Eq. (1) with  = 1, exactly as was 
found in Fig. 1.  

The weights an can be written out in terms of reflection coefficients, etc., although since 
their variation is always much slower than that of the impulses their influence must be 
small and it does not alter the above argument. It was shown by Harrison and Nielsen 
(2007) that, for instance, in isovelocity water the one-way multipath pulse envelope 
decays approximately exponentially with time. 

3.2 General refracting environments 

We now extend these ideas to a general refracting environment by attempting to write  the 
Fourier transform in a form that again demonstrates explicitly the functional dependence 
on  and r. 

For a general stratified environment the eigenrays for horizontal separation r obey 

)()()( ,,,,,,   nrnsnc rrnrr   (10) 

where rc is the cycle distance (double the result of integrating from the top ray turning 
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point to the bottom ray turning point) and rs , rr  are the partial cycle distances from the 
top turning point down to the source and receiver depths respectively. Explicit formulas 
will be given later. The corresponding eigenray travel times are 

)()()()( ,,,,,,,,   nrnsncn ttntrt   (11) 

where the tc , ts , tr are the full cycle and partial cycle travel times corresponding to rc , rs , 
rr .  

Equation (7) is true in general but with the behaviour of n,, depending on sound speed 
profile. So we expect similar relations to Eq. (8) but with the resultant G being a function 
of the product of  with some different function of r. As it stands these fringes are in the 
complex quantity F. Alternatively what is often observed is the modulus square of F, so 
the cross terms in |F|2 may be important, and these depend on tn,, – tm,,). It transpires 
that the value of  is very slightly different in the two cases (see Sect. A3 of Appendix 
A), and we estimate them both below. In the first case we investigate the delay time n,, 
after some range-dependent datum, and we arbitrarily choose range r divided by the 
minimum sound speed in the profile cL. 

3.3 Condition for a fringe in absolute phase 

We need to investigate the delay time n,, after some range-dependent datum, and we 
arbitrarily choose range r divided by the minimum sound speed in the profile cL. So n,, 
can be expressed as 


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 (12)  

As in the isovelocity case the eigenray impulses still come in groups of four, two positive 
and two negative, and the separations within a group (n,±1,±1 – n,±1,±1) are always smaller 
than the group separation (n+1,, – n,,) (see Appendix A, Sect. A2). Therefore fringes 
due to the group separation will be more closely spaced in frequency and more visible 
than those due to the separation of the members of the group, so we concentrate on group 
separation. We define the group centre as the point n,0,0 which is almost identical to the 
mean of the group. 













Lnc

nc
n cr

t
rr

1

)(
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0,0,
0,0, 


  (13) 

The equivalent of Eq. (7) for the groups is 
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
n

nn iarF )exp(),(ˆ
0,0,  (14) 

As argued earlier (after Eq.(8)), to see fringes it must be possible to write n,0,0 as the 
product of a function of range only and a function of all the other parameters (e.g. n, H, zs 
etc.). In other words in the exponent of Eq. (14) the range dependence must be separable. 

This ensures that in going from one range to the next the Fourier transform F̂  may 
shrink or stretch slightly but always retains its shape. That property forms the striation 

pattern. Without that property there is no fringe pattern since F̂  may vary in an arbitrary 
fashion. 

It is always possible to calculate tc and rc for a given launch angle (i.e. turning point 
velocity or horizontal wavenumber). Even if rc is a discontinuous function of angle it is 
still possible to plot (tc/rc – 1/co) as a function of cycle distance rc since the latter is also a 
function of angle. Thus we can always write n as a function of rc, say n = n (tc – rc / co) = 
n G(rc). However this alone (in combination with r = n×rc) does not ensure that n is a 
separable function of range r. The only function G that allows separation is G(rc) = g rc

q 
(where g is a proportionality constant) since G(rc) = G(r/n) = g r 

q× n – q. Thus to see 
fringes (in the complex Fourier transform) we must have 

constAzcHgrcrt m
q

cocc   ))(,()/(  (15) 

for the mth fringe, and so 

gnrgnrcrtn qqq
coccn

 1
0,0, )/(  (16) 

where q and g are to be determined and q is a constant. It is shown in the Appendix A, 
Sect. A.3 that by using this equation to evaluate d(log n,0,0)/d(log rc) we can evaluate  

directly. From Eq. (16) the exponent in Eq. (14) is then )( 1 gnri qq   and for the jth 
fringe we need 

constAr j
q   (17) 

but then taking logs and differentiating we find behaviour exactly as in Eq. (1) with  =  –
q. The implication is that no other behaviour is possible. 

3.4 Condition for a constant relative phase fringe 

The relative phase condition depends on (n,, – m,,) , and it is shown in Appendix A 
that (n,, – m,,) = (n – m)(tc – rc K/). Following the arguments of the previous section 
through but starting with (tc – rc K/) instead of (tc – rc /co) we find that Eq. (15) becomes 

constAzcHgrKrt j
q

ccc   ))(,()/(   (18) 
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for the jth fringe, and so 

gmnrgmnrKrtmn qqq
cccmn

 1
,,,, )()()/)((    (19) 

Again it is shown in Appendix A that this equation can be used to evaluate ’ directly. 

3.5 Source and receiver depths 

From the earlier equations, notably Eq. (8), the source and receiver depths have an effect 
on the striations but it is weak except for the fact that they can limit the range of angles 
(or modes) available to interfere. As noted in Appendix A the source and receiver depths 
contribute small time offsets around the time tn,0,0 that separate the four impulses in each 
group. These offsets have little effect on the interference fringes and the main pattern is 
still a function of range. 

Writing Eq. (8) another way by combining the source and receiver delays 












  rs zz

n
nn dzcdzciarF

000,0, /sinsin/sinsin)exp(4),(   (20) 

the sine terms are essentially WKB modes that individually could form patterns of 
horizontal stripes on a plot of frequency vs. range, but collectively average out to a 
uniform background for the striations caused by n,0,0. 

In isovelocity water keeping r and zs constant but varying zr we see fringes with 

constant Azr  (21) 
but these are not as deeply modulated as the fringes in range. 
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4 
Specific sound speed profiles 

We can now evaluate tc, rc, n for some given profiles, converting n to a function of 
range. We can then evaluate  either through the relation between n and r or by the 
following formulas derived in Appendix A. For absolute phase fringes: 

og

po

cco SS

SS

rtc 








)1/(

cos1   (22) 

and for relative phase fringes: 
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
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
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S

dK
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rtc
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




 sin

)cos/(
'  (23) 

The latter ’for relative phase fringes corresponds to that calculated by Chuprov, and 
several of the results below can be found in Chuprov (1982). A summary of the results of 
Section IV is given in Table 1. In all the following examples the ducts are assumed to be 
one-sided, even though the parabolic and cosh profiles could obviously be extended to 
two-sided, doubling their cycle distances and times.    

Figures 3(a, b) show tc, rc and Fig. 4 shows log(tc – rc/co) vs. logrc for each case. The 
straightness of the lines in Fig. 4 shows the goodness of fit to a line of constant  and one 
can also see the variability between cases. 
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Table 1: The slope of interference fringes  calculated according to Eq.(22) compared 

with the standard waveguide invariant ’according to Eq. (23) and their approximate 

forms for various sound speed profiles. For the general profile shape p/11  and 
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. The asterisks indicate solutions already published by Chuprov (1982). 
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(a)  

(b)  

Figure 3:  . (a) Cycle time vs. launch angle, (b) Cycle distance vs. launch angle, for six 
profiles as labelled: isovelocity; linear c; linear k2; cosh; parabolic k2; parabolic c2. 
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Figure 4:  Corrected cycle time (tc – rc / co) vs. cycle distance rc displayed on a loglog 
graph for the six profiles of Figs. 3. Gradients correspond to the respective , so a straight 
line indicates that  is independent of launch angle. 

4.1 Isovelocity 

For an isovelocity profile the cycle time and distance are 

)sin/(2 cHtc   (24) 

tan/2Hrc   (25) 

whose ratio is sec, so both Eqs. (12) and (13) reduce to  

 1sec)( ,,,,    nn c

r
r  (26) 

as already found in Eq. (4). From Eqs. (22, 23)  

1cos    (27) 
1cos' 2    (28) 

4.2 Uniform sound speed gradient 

Assuming a uniform sound speed gradient with lower speed co 
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where o is measured at the low sound speed boundary. Substituting Eqs. (30) and (31) 
into Eq. (13) with cL = co we find 
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Note that the negative sign is because the chosen arbitrary datum was the slowest speed 
so that a time advance appears as negative delay. If instead we had substituted in the 
complete Eq. (12) there would have been an additional source and receiver term. The 
source term reduces, after some algebra, to 
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is demonstrably small compared with the rest of Eq. (32). The value of  and ’ [Eqs. 
(22) and (23)] are 
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and both approximate to the familiar result. Figure 4 shows that the line whos gradient is 
 is indeed close to straight. 

4.3 Linear k2  

The profile  

)1(22 zakk o   (36) 

i.e.  

)1/(22 zacc o   (37) 
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is included here because it is often used in modal analysis. It can be shown that 
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which, to first order, is the same result as for linear c(z). 

4.4 The cosh profile 

It is well known (see Eq. 5.45 of Tolstoy and Clay, 1987) that the profile 

azcc o cosh  (43) 

leads to perfect focusing with 

o
c ca

t


  (44) 

and  

a
rc


  (45) 

Inserting these in Eq. (13) we find n,0,0 = 0 (for all focuses). Thus the sums in Eq. (7) 
reduce to either no terms or a single term with the exponential term being unity, and so 
the Fourier transform is either flat in frequency or non-existent. According to Eqs. (22) 
and(23) both  and ’are infinite. This behaviour is shown by the vertical fringes in Fig. 
5 calculated with ORCA calculated with ORCA (Westwood, et al., 1996). 

Considering a ray trace up to some maximum launch angle (e.g. Fig. 5.7 of Tolstoy and 
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Clay, 1987) and picking a specific receiver depth we see that for ranges near a focus there 
are no eigenrays at all (unless the receiver happens to be at the focal depth), and for 
ranges in between there is only one eigenray. This is confirmed by the inset ray trace at 
the top of Fig. 5. In other words calculation of travel time differences or delays becomes 
meaningless in this case. 

 

Figure 5:   Striations calculated by ORCA for the (two-sided) cosh profile 

)cosh(azcc o . The superimposed and aligned ray trace (receiver depth shown by 

dashed line) confirms that there may be no arrivals near the focus (when receiver depth is 
not equal to source complementary depth) and elsewhere only one eigenray, making an 
exactly repeating pattern each ray cycle. 

4.5 Parabolic k2 (over-curved) 

The rather pathological behaviour for the cosh profile suggests that a slightly modified 

profile might be more interesting. The profile )1( 2222 zacc o  , though identical to 

cosh near z = 0, is slightly less tightly curved elsewhere whereas the profile 

)1/( 2222 zacc o   (46) 

is slightly more tightly curved. We take the latter, which can be written in terms of 
wavenumber k(z) as 
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)1( 2222 zakk o   (47) 

The tighter curvature means that steep rays curve more than they would in the cosh case 
and therefore tend to focus at a shorter range. This is reflected in the cycle time and 
distance which can be shown to be 
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For each n only certain ranges can contribute impulses because of the limit on o set by 
the maximum sound speed cmax. These ranges r are bounded by nrc0 and nrc0 cosmax. 
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and at each range there are limits on n given by 
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which both tend to infinity in the small angle limit. 
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Although the formula (Eq. (50) is correct for this profile it is slightly misleading because, 
as we shall see in Sect. IV.G, a very slight change in the profile makes a dramatic change 
in the cycle distance formula, and this in turn completely alters the behaviour of Eq. (50). 
For now we note that whatever the fringe’s shape they tail off towards range zero since   
is large and positive. 

4.6 Parabolic c2 (under-curved) 

An under-curved version of the cosh curve is 

)1( 2222 zacc o   (54) 

The cycle time and distance integrals are respectively elliptic integrals of the first and 
second kind. When evaluated at the lower limit (z = 0) these are both zero, and at the 
upper limit (the ray turning point) they both have their first argument equal to /2 and so 
they are complete elliptic integrals of the first and second kind, and series formulas are 
given by Abramovitz and Stegun (1965) [Eqs. 17.3.11, 17.3.12]. 
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Again defining the axial cycle distance arr cc /)0(0  we find that now it is longer 

than for other ray angles. The resulting time separation is 
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But from Eq. (56)  
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where for each n only certain ranges can contribute impulses because of the limit on o 
set by the maximum sound speed cmax. Thus at each range there are limits on n given by 

  4/)/(3/ 2
max0 oc ccnrrn   (60) 

This is similar behaviour to the over-curved parabolic case but with fringes now tailing 
off on the far side of the foci. The values of   is 
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and ’is soluble but messy and can be seen as a special case of Eq. (83) (Sect. II.C.8) 
with  = ½ . 
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4.7 General power law k2 = ko
2 (1 – (az)p) 

The cycle time and distance integrals for the profile 
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where 

p/11  (66) 

and K is the horizontal wavenumber. The variety of profiles available is shown in Fig. 6, 
and the cycle time and distance behaviour is shown in Figs. 7(a, b). 



NURC-FR-2011-001  NATO UNCLASSIFIED 

  NATO UNCLASSIFIED - 20 -

 

Figure 6:  Normalised sound speed profiles ))(1(22 p
o azkk   for various values of 

the parameter p for which solutions (i.e. tc, rc, ) are available. 
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(a)  

(b)  
 

Figure 7:  (a) Cycle time vs. launch angle, (b) Cycle distance vs. launch angle, for 
various values of the parameter p corresponding to the profiles in Fig. 6. 
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We can see that these reproduce some of the earlier results, namely linear and parabolic 
with p = 1, 2, (  = 0, ½). In fact the behaviour of the isovelocity profile is also 
reproduced with p = ∞, (  = 1) and H = 1/a. Figure 6(b) shows rc vs.  for a number of 
values of the parameter p. The time separation in terms of angle is  
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To write this in terms of rc we need to substitute for o. Provided  is not too close to ½ 
the small angle approximation means that the cosine term in Eq. (69) can be ignored. At 
exactly  = ½ we see why the solution for the parabolic profile [Eqs.(49, 50)] was 
“correct but misleading”; for  < ½ the the power of the sine term is positive and so the 
cycle distance starts at zero for small angles whereas for  > ½ the power is negative and 
the cycle distance starts at infinity. Only at exactly  = ½ is it proportional to cosine. So 
mathematically we make the approximation 
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but graphically we can plot the logs of the exact Eq. (70) against the exact Eq. (69) as in 
Fig. 8. To first order the time separation is 
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Figure 8:  Corrected cycle time vs. cycle distance rc displayed on a loglog graph for 
various values of the parameter p as shown in Figs. 6,7. Constant  corresponds to a 
straight line where )2/()2(  pp . 

Inserting this into Eq. (14) and taking logs or directly from Eq.(22, 23) we find that 
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The plot in Fig. 8 of the logs of the exact quantities in Eqs. (72) and (69) confirms that 
these formulas behave well even near p = 2. Thus it is possible to find  varying from 1 
with large p (quasi-isovelocity) to infinity with p = 2 (parabolic), and from minus infinity, 
through –3 down to –1 with p = 0. For p slightly greater than 2,  is large and positive 
(sloping down towards range zero); for p slightly smaller than 2,  is large and negative 
(sloping down towards infinite range). Some examples of the striation patterns are shown 
in Fig. 9. 
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(a)    

(b)  



NURC-FR-2011-001  NATO UNCLASSIFIED 

  NATO UNCLASSIFIED - 25 -

(c)  

Figure 9:  Striations calculated by ORCA for the power law ))(1/(22 p
o azcc   with 

(a) p =0.5, (b) p =2.0, (c) p =2.5. The fringes follow )2/()2(  pp  closely. 

4.8 General power law  c2 = co
2 (1 + (az)p) 

The solutions for the profile 

 p
o zacc )(122   (75) 

(with  p0  and 1za  for all z) can also be written in terms of hypergeometric 
series. The cycle time and distance integrals can be written as 
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again with p/11 . Now 
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Again these formulas reproduce results for p = 1, 2, ∞, although the p = 1 case is not 
shown in this paper. Note that there is a sudden changeover from the power of the tangent 
being positive to negative at exactly  = ½ with a misleading parabolic solution (Eqs. (55, 
56) in between [see Figs. 6(a, b)]. The time separation is 
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and we substitute the first order expression for rc 
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which, to first order, leads to the same expression as Eq. (72). Equations (22, 23) lead to 
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as long as 2p . 
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5 
Hybrids 

5.1 Bilinear Duct  

One can construct a sound channel from an upward and a downward linear k2 duct as in 
Sect IV.C, for example, to make a bilinear duct (see e.g. Tolstoy and Clay, 1987). 
However the only effect in this context is that the values of tc and rc are doubled. 
Therefore after substituting in Eq. (13) there is no effect and we find again,  = –3. 

5.2 Asymmetric Ducts 

By the same reasoning as above one can construct n,,  for asymmetric ducts by adding 
the values of tc or rc for the upper and lower parts of the channel. As an example we take 
Eqs. (30) and (31) and insert them into Eq. (32), but now we assume the depth scale a in 
the upper part and b in the lower part. Note that the components of tc and rc are always 
positive 
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And, surprisingly, this makes absolutely no difference at all to n,, and  since the a and 
b factor out in the ratio of tc/rc. 
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and so beta is still –3.  
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Figure 10:  The transition from  = 1 at short range to  = –3 at long range in a range-
independent upward refracting environment. 

5.3 Combined refraction and reflection 

Even with a fixed sound speed profile it is possible for the shape of the fringes to change 
because at different ranges different parts of the profile dominate. Figure 10 shows an 
example with upward refraction where at short range boundary-reflected paths dominate 
leading to  = 1, but at long range these die out leaving only refracted paths with  = – 3. 
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(a)  

(b)  
Figure 11:  The effect on striations of adding randomness to the sound speed profiles in 
Fig.12. (a) pure linear profile and clear fringes; (b) 21 piece-wise linear layers resulting in 
smudged fringes. 
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5.4 Adding variability/randomness 

One can take any of the analytical sound speed profiles considered above and numerically 
calculate the effects of adding some kind of randomness to the profile. From a ray tracing 
point of view sudden changes in sound speed or its first derivative will result in erratic 
behaviour of the cycle distance and time. From the previous analysis, therefore, one 
would expect the ensuing chaos to result in an absence of clear fringes. Figure 11 shows 
that this is indeed what happens. Figure 11(a) is the control result with no randomness; 
Fig.11(b) has rather slow variation (the profile is defined by only 21 points) which wipes 
out the fringes. The corresponding profiles are shown in Fig. 12.  

 

Figure 12:  Sound speed profiles for Fig. 11, pure linear (solid); 21 piece-wise linear 
layers (dashed, offset by 5m/s). 
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6 
Relationships, Invariance, and Range dependence 

The previous sections investigated the conditions for fringes or striations to form and the 
dependence of the striation slopes (in frequency-range space) on sound speed profile. No 
previous theory was invoked and no assumptions were made other than the fringes having 
a Fourier transform relationship with the eigenray arrival times, i.e. the impulse response. 
Chuprov’s (1985) original meaning of “invariance” was that the quantity  itself was 
independent of frequency, range, or source/receiver depth in a range-independent 
environment (Chuprov, 1985, p.94). All the formulas derived here, particularly Eqs. (73, 
74), show this and demonstrate explicit dependence of  on the sound speed profile alone. 
A number of authors have considered range invariance too (D’Spain, 1999; Brown, et al., 
2005). So far we have not commented on any range invariant properties since the 
environments in this paper were range-independent. Nevertheless the logical starting 
point that  f(r) should be constant for some separable function of range f would still be a 
valid requirement for a fringe in a range-dependent environment. 

To make the connection with range-dependence we use the general relationship derived 
in the Appendix (Eq. A2) between cycle time and cycle distance. 

dzcdzKkKrt cc /sin2)/2(/ 22     (88) 

The extreme right hand side is exactly Weston’s ray invariant (Weston, 1959) that 
describes the relation between ray angles and water depth as bathymetry or sound speed 
change with range. As written in the middle of the equation, the integral is exactly the 
WKB phase integral (Morse and Feshbach, 1953; pp1098-1099) which for a bound 
system, i.e. a reflecting or refracting duct evaluates to (m + ½), where m is the mode 
number. Thus in the adiabatic approximation the mode number itself is an invariant; 
individual modes do not lose energy to other modes and they stretch and shrink vertically 
to fit changes in sound speed and bathymetry as they propagate horizontally. Given that 
the right hand side is definitely an invariant (i.e. a constant for each m or initial ray angle) 
in a range-dependent environment, we deduce that the left hand side must also be 
invariant.  

Comparing Eq. (88) with (19) we see that the eigenray time difference (n,, – m,,) 
which is equal to )/)(( Krtmn cc   must also be invariant with range-dependent 

environments. However ’is the differential of this quantity with respect to rc [see Eq. 
(A21)] and rc is not an invariant, and neither is rc

2 / (drc / dK) so the outcome is that ’is 
not generally invariant. Comparing Eq. (16) with (19) we see that the absolute time n,0,0 
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is also not an invariant. 

Nevertheless it is possible to see how the striations will be modified by a change in depth. 
Harrison and Siderius (2003) showed that the full field, and explicitly the multipath travel 
times in an (adiabatic) isovelocity range-dependent environment obey 
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Following the argument after Eq. (8) this means that fringes occur when  
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(b)  

Figure 13:  Striations with variable water depth. Piece-wise linear bathymetry defined by 
five equally spaced depths [100 100 120 100 100] m. Plot of frequency against (a) r, and 

(b) 
r

s HdrH
0

22 / . 

Thus the otherwise straight fringes (proportional to r) might be skewed by a dip in the 
seabed, for instance. Figure 13 shows this effect for piece-wise linear bathymetry with 
five depths of 100, 100, 120, 100, 100 m at 8km intervals. In Fig. 13(a) this distortion is 
shown in a plot of  vs. r, and the fringes are clear on both sides of the dip. One could 
calculate the integral analytically in this case and superimpose a calculated fringe shape. 

Instead we choose to plot in Fig. 13(b)  vs. 
r

s HdrH
0

22 / and thus demonstrate the 

proportionality of Eq. (90) through the straightness of the fringes. The effectiveness of 
this correction is indeed striking. 
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7 
Some implications for reverberation 

Reverberation as a function of travel time consists of echoes from scatterers at 
progressively greater range from source and receiver, so at first sight one would expect 
striations, being a propagation effect, to appear in the spectrum of broad band 
reverberation. Experimentally striations are occasionally seen in reverberation, but not 
always. Some possible reasons why are offered by this paper’s approach. 

 Source/receiver collocation: Horizontal separation of source and receiver will 
cause differences between outward and return propagation fringes which may 
blur reverberation striations, at least at short range. 

 Smooth sound speed profile: To see striations the sound speed must be a 
reasonably smooth function of depth (e.g. continuous second derivative, avoiding 
real or false caustics) so that the time separation of the multipath impulses varies 
smoothly with angle (and therefore cycle distance). 

 Number of eigenrays: At least a few eigenrays of comparable strength are 
required to make interference fringes. If either source, receiver, or scattering 
surface is near to the highest sound speed in the duct the number of eigenrays 
with refraction turning points will be small leaving only steep rays that interact 
with both boundaries to form fringes. There is also scope for differences between 
the outward and return paths. 
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8 
Conclusions 

Striation patterns in the propagation spectrum can be thought of as the result of range 
variation of the multipath impulse response, and so they can be calculated from travel 
times and therefore ray cycle times and cycle distances. The waveguide invariant  
quantifies the range variation of these interference fringes and it has been determined for 
a number of sound speed profiles including the power law of depth 

))(1/()( 22 p
o azczc   and ))(1()( 22 p

o azczc  . It was shown that the cosh profile 

is a pathological case (which is close to a parabolic profile or p = 2 in the above formulas) 
which does not exhibit striation because the exact focusing results in only a single 
eigenray arrival for all ranges and depths and therefore no interference. 

By considering absolute arrival times or time differences it was possible to derive a  for 
absolute phase and a’ for relative phase in each of the sound speed profile cases. Both 
can be written in terms of group and phase slownesses, and most of the relative phase 
formulas are well known. 

The approach shows the clear dependence of the striations’  on path lengths rather than 
the corresponding eigenray amplitudes. For this reason addition of randomness to the 
sound speed profile leads to erratic behaviour of the cycle time and cycle distance with 
launch angle, and consequently striation patterns become blurred. Although the 
propagation spectrum and its interference patterns constitute part of the inputs for 
geoacoustic inversion, the value of  by itself is not directly related to seabed properties, 
even if the seabed is layered. 

The distorting effect of variable bathymetry on the fringes was considered. In isovelocity 
water this distortion can be eliminated by plotting the fringes against frequency and 


r

s HdrH
0

22 /'  rather than r itself. 
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Annex A: Some useful relationships 

A.1. Exact relationships: single eigenray 
By considering an element of a ray of length ds at grazing angle   the horizonal and 
vertical excursions dr, dz, and the time increment dt are related, for angular frequency  
and local wavenumber k(z) =  /c(z), by 

dzkdrkdtdsk  sincos   (A1) 

Integrating in z from one side of the duct to the other (z = 0,H), or to a ray turning point, 
whichever is the sooner, invoking Snell’s law, and multiplying by two we find a relation 
between cycle time tc and cycle distance rc 

 
HH

cc dzKkdzkrKt
0

22

0
2sin2   (A2) 

Alternatively integrating from the same side down to the source or receiver depth zs,r we 
have 

  rsrs zz

rsrs dzKkdzkrKt
,,

0

22

0,, sin  (A3) 

or integrating over the depths of the unwrapped images 

  
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Differentiating Eq. (A2) with respect to K and noting that the differential of the right hand 
side is just – rc we find a relationship between the derivatives of tc and rc  

Kd

rdK

Kd

td cc


  (A5) 

and 


K

rd

td

c

c   (A6) 

Similar relations hold for ts,r and rs,r. The quantities tc and rc can be calculated through the 
following integrals across the water column (or at least between ray turning points) 
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 dzzctc )sin)(/(2   (A7) 

 dzrc cot2  (A8) 

A.2. Approximate relationships: eigenray pair 
The arrival time difference between the mth and nth eigenray (tm,, – tn,,) is estimated 
as follows, given that their angular separation is small. Cycle times and cycle distnces for 
m, n are labelled respectvely with a superscript “+”, “–”. Travel times are 

  rcsm tmttt  ,,  (A9) 
  rcsn tnttt  ,,  (A10) 

Horizontal range is 

  rcs rmrrr  (A11) 
  rcs rnrrr  (A12) 

Assuming that the difference between a “+” and a “–” quantity is accounted for by a 

slight change in angle   (i.e.  ddttt xxx  
), we find, by subtracting Eqs. (A9, 

A10) 


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d
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tt rc

c
s

nm  )(,,,,  (A13) 

Subtracting Eqs. (A11, A12) we have 
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d

drt

d
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d
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s  )(0  (A14) 

Substituting for  we find 
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d
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d
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rcs

rcs

ccnm )(,,,,  (A15) 

and invoking Eq. (A4) this reduces to 

  /)(,,,, Krtnmtt ccnm   (A16) 

and by Eq. (A2) this is 
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   
H

ccnm dzKknmKrtnmtt
0

22
,,,, )(2/)(   (A17) 

Using the same method it is easy to show that, for instance 

    
rz

rrnn dzKkKrttt
0

22
1,1,1,1, 2/2   (A18) 

Comparing Eqs. (A17, A18) we see that the time separation of groups is always greater 
than separation of peaks within a group. For this reason the visible fringes, i.e. those with 
the closest spacing in frequency, tend to depend on the separation of the groups of four 
delta functions.  

A.3 Formulas for beta 
The quantity  is usually thought of as d(log)/d(logr). It was shown in Sect. III that for 
absolute phase fringes it can be expressed as 

)log(

)/log(

)log(

)log( 0,0,

c
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c

n

r

crt

r 
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



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
  

and for relative phase fringes it is 
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Fringes of absolute phase: 
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so, with no approximation, and making use of Eq. (A6) we have 
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 (A20) 

where gS , pS are group and phase slownesses Sg = tc/rc , Sp = K/ and oo cS /1 . 

Relative phase fringes: 
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but this can also be written in terms of slownesses using Eq. (A6) since 
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so 

g

p

S

S




'  (A23) 

as stated by Chuprov [1982] and D’Spain and Kuperman [1999]. By substituting Eq. (A2) 
in the denominator of Eq. (A22) this can be reduced further to  

dK
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dzKk

r c
H
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22
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as in Brown et al.(2005), Eq. (24), and differentiating rc we have 
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Finally for modal propagation the right hand side of Eq. (A2) is twice the phase integral 
which is related to the mode number m so this can be written  
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